Binghamton CS-220

University Spring 2016

Example x86 Code

Computer Systems Sections 3.3 - 3.6

Binghamton CS-220

University Spring 2016

Simple C Function

int myfunc(int a,int b) {
Int C;
c=a-+ 3;
C=cC+ b;
return c;

Binghamton

University

CS-220
Spring 2016

gcc -m32 -0O0 -S prog.c

prog.c
int myfunc(int a,int b) {

Int C;
C=a+ 3
C=C+ b;
return c;

prog.s

myfunc:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
leave
ret

%ebp

%esp, Y%ebp
$16, %esp
8(%ebp), Y%eax
$3, %eax

%eax, -4(%ebp)
12(%ebp), Yoeax
%eax, -4(%ebp)
-4(%ebp), %eax

Binghamton CS-220

University Spring 2016

Function Invocation Detalls (Lecture 10)
a N

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]
a=3; _ 4

b=4;
[Main (caller) invokes myfn(callee)] — « Preserve caller’s state

X=a, y:b_|_ pl * Create/initialize local variables
[myfn (callee) sta rt,u o] » Establish argument accessibility
X*X + y*y

'myfn (callee) return to main]
‘main (caller) return from myfn]
c = [return value from myfn]
[main (callee) return to OS]

Binghamton CS-220

University Spring 2016
myfunc entrance Memory
myfunC' xFFFF FFFO
* Preserve caller’s state : b xFFFF FFEC | x0000 0004
0
e Create/initialize local variables pushl O/oebp o al xFFFF FFES | x0000 0003
« Establish argument accessibility movl %esp, %ebp
subl $16, %esp xFFFF FFE4
. . . movl 8(%ebp), Yoeax ORI
int myfunc(int a,int b) { addl $3. %eax c| xFFFF FFDC | xdead beef
INt C; movl %eax, -4(%ebp) xFFFF FFD8
c=a+ 3 movl 12(%ebp), %eax
C=C+ b; addl %eax, -4(%ebp)
return c; movl -4(%ebp), %eax
ret ebp xFFFF FFEOQ

eax x0000 0000

Binghamton CS-220

University Spring 2016

myfunc statement 1 Memory

xFFFF FFFO
b xFFFF FFEC | x0000 0004
a| xFFFF FFE8 | x0000 0003

myfunc:
pushl %ebp
movl %esp, %ebp

subl $16, %esp XEFEE FFEA
. . . movl 8(%ebp), Yoeax ORI
int myfunc(int a,int b) { addl $3. %eax ¢ xFFFF FFDC | xdead beef
int c; Amovl Yeax, -4(%ebp) xFFFF FFD8
c=a+ 3 movl 12(%ebp), %eax
C=cC+b; addl %eax, -4(%ebp)
return c; movl -4(%ebp), %eax
ot ebp xFFFF FFEQ

eax x0000 0003

Binghamton CS-220

University Spring 2016

myfunc statement 1 Memory

xFFFF FFFO
b xFFFF FFEC | x0000 0004
a| xFFFF FFE8 | x0000 0003

myfunc:
pushl %ebp
movl %esp, %ebp

subl $16, %esp XEFEE FFEA
. . . movl 8(%ebp), Yoeax ORI
int myfunc(int a,int b) { addl $3. %eax ¢ xFFFF FFDC | xdead beef
int c; Amovl Yeax, -4(%ebp) xFFFF FFD8
c=a+ 3 movl 12(%ebp), %eax
C=cC+b; addl %eax, -4(%ebp)
return c; movl -4(%ebp), %eax
ot ebp xFFFF FFEQ

eax x0000 0006

Binghamton CS-220

University Spring 2016

myfunc statement 1 Memory

xFFFF FFFO
b xFFFF FFEC | x0000 0004
a| xFFFF FFE8 | x0000 0003

myfunc:
pushl %ebp
movl %esp, %ebp

subl $16, %esp XEFEE FFEA
. . . movl 8(%ebp), Yoeax ORI
int myfunc(int a,int b) { addl $3. %eax ¢ xFFFF FFDC | x0000 0006
int c; Amovl Yeax, -4(%ebp) xFFFF FFD8
c=a+ 3 movl 12(%ebp), %eax
C=cC+b; addl %eax, -4(%ebp)
return c; movl -4(%ebp), %eax
ot ebp xFFFF FFEO

eax x0000 0006

Binghamton CS-220

University Spring 2016
myfunc statement 2 Memory
myfunc: xFFFF FFFO
.pushl %ebp b/ xFFFF FFEC | x0000 0004
movl %esp, %ebp a| xFFFF FFES | x0000 0003
subl $16, %esp AUFIFIFLE IPIFIES
- : . movl 8(%ebp), Y%eax BRI
int myfunc(int a,int b) { addl $3. %eax ¢ xFFFF FFDC | x0000 0006
nt e / movl %eax, -4(%ebp) XFFFF FFD8
c=a+s3; movl 12(%ebp), %oeax
C=C+b————""addl %eax -4(%ebp)
return c; movl -4(%ebp), %eax
} leave Reg
ret ebp xFFFF FFEO

eax x0000 0004

Binghamton CS-220

University Spring 2016
myfunc statement 2 Memory
myfunc: xFFFF FFF0
.pushl %ebp b/ xFFFF FFEC | x0000 0004
movl %esp, %ebp a| xFFFF FFES | x0000 0003
subl $16, %esp AUFIFIFLE IPIFIES
- : . movl 8(%ebp), Y%eax BRI
int myfunc(int a,int b) { addl $3. %eax ¢ xFFFF FFDC | x0000 000A
nt e / movl %eax, -4(%ebp) XFFFF FFD8
c=a+s3; movl 12(%ebp), %eax
C=C+b————""addl %eax -4(%ebp)
return c; movl -4(%ebp), %eax
} leave Reg
ret ebp xFFFF FFEQ

eax x0000 0004

Binghamton CS-220

University Spring 2016

Function Return Detalls

. Evaluate return expression\
[OS(caller) invokes Main (callee)] * Savereturn value
[Main (callee) startup)] * Free local variables
=3 * Restore caller’s state
b— 4’. //(Branch to return address)

[Main (caller) invokes myfn(c

X=a, y=b+2;
[myfn (callee) startup e Restore caller’s state
X*X + y*y / * Free space for arguments/return address
[myfn (callee) return to main] e Use returned value

[main (caller) return from myfn]
c = [return value from myfn]
[main (callee) return to OS]

CS-220

Spring 2016

Memory

xFFFF FFFOQ

b xFFFF FFEC | x0000 0004

a| xFFFF FFE8 | x0000 0003

xFFFF FFE4

Binghamton
University
myfunc return
myfunc:
pushl %ebp
int myfunc(int a,int b)+ movl %esp, %ebp
yint C-(ST subl $16, %esp
C E;. 4 3 movl 8(%ebp), %eax
—
’ addl $3, %eax

%eax, -4(%ebp)

xFFFF FFEO

c| xFFFF FFDC | x0000 000A

xFFFF FFD8

C=C + b,\ mov/l
return C, \mow

12(%ebp), Y%oeax

) addl%eax, -4(%ebp)

M

Evaluate return expression movl
 Save return value leave
* Freelocal variables ret

-4(%ebp), Yoeax

 Restore caller’s state
! Branch to return address J

Reg

ebp xFFFF FFEOQ
eax x0000 000A

Binghamton

CS-220

University

If/Then/Else

int myfunc(int a,int b) {

Int C;
if (@>b) c = a;
else c = b;
return c;
} L2:
L3:

pushl
movl
subl
movl
cmpl
jle
movl
movl

Jjmp

movl
movl

movl
leave
ret

%ebp

%esp, %ebp
$16, %esp
8(%ebp), Y%eax
12(%ebp), Y%eax
L2

8(%ebp), Y%eax
%eax, -4(%ebp)
L3

12(%ebp), Yoeax
%eax, -4(%ebp)

-4(%ebp), Yoeax

Spring 2016

Binghamton CS-220

University Spring 2016
If/Then/Else pushl 9%ebp Memory
movl %esp, %ebp
subl $16, %esp b | x0000 0004
0 0
int myfunc(int a,int b) { movl 8(%ebp), Yeax a | x0000 0003
int c: cmpl 12(%ebp), Y%eax
if (a>b) e .L2 (%ebp)
cC=a movl 8(%ebp), Y%eax c | xdead beef
' ———— movl %eax, -4(%ebp)
else _ 3
c = b; mp-
_ L2:
return c;
| movl 12(%ebp), Y%eax
movl %eax, -4(%ebp)
L3:

movl -4(%ebp), %eax
leave
ret

Binghamton CS-220

University Spring 2016
Processor State (IA32)
n 9 \
Information about currently ceax
executing program %ecx
* Temporary data sedx \ General purpose
eax, ...) ¢ebx registers
* Location of runtime stack sesi
%ebp,%esp) sedi)
* Location of current code control tesp Current stack top
point %$ebp Current stack frame
(%eip, ...)
e Status of recent tests zelp Instruction pointer
(CF, ZF, SF, OF)
CF | |2F | |SF | |OF | Condition codes

Binghamton CS-220

University Spring 2016

Condition Code Registers

Carry Flag =1 if last result MSB overflow (unsigned)
Zero Flag = 1 if last result was zero
Sign Flag = 1 if last result < 0 (MSB==1)

. . Overflow Flag = 1 if last result sign is incorrect (++- or --+)

Binghamton CS-220

University Spring 2016

Condition Codes (Implicit Setting)

* Implicitly set by arithmetic operations
Example: addla,b; b’=a+b
CF set if carry out from most significant bit (unsigned overflow)
ZF setifb’ ==
SFsetifb’ < 0 (assigned)

OF set if two’s-complement (signed) overflow
(a>0 && b>0 && b’'<0) || (a<0 && b<O0 && b’'>=0)

* Not set by 1lea instruction
* Full documentation (IA32) or Wikibooks X86 Control Flow

http://www.jegerlehner.ch/intel/IntelCodeTable.pdf
https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow

Binghamton CS-220

University Spring 2016

Condition Codes (Explicit Set: Compare)

Condition code can be set explicitly by the “cmp” instruction...
cmpl /cmpq Src2, Srcl
cmpl b, alike computing a-b without setting destination

*ZF setifa ==
*SF set if (a-b) < 0 (as signed)

*OF set if two’s-complement (signed) overflow
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

*CF set if carry out from most significant bit (used for unsigned comparisons)

Binghamton CS-220

University Spring 2016

Condition Code Interpretations
Based on CMP B,A = A-B or SUB B,A = A=A-B

Signed Comparisons Unsigned Comparisons
st s [T Lo Lcr e e T s o[
X a::b X
jne al=b 0 X X X _
jne al=b 0 X X X
| 0 0 0 X
B . x ja a>b 0 X X 0
X 0 0 X jae a>=b X X X O
jge a>=b
X 1 1 X ib b X X X 1
0 1 0 X
jl a<b X X X 1
0 0 1 X jpe b>=a
2 I e 1 X X X
jle a<=b
X 0 1 X

Binghamton CS-220

University Spring 2016

Carry Flag Confusion

* Question: How does the carry flag get set when performing
unsigned subtraction?

* Official Answer: The carry flag is set if either the most significant
bit overflows OR if a borrow is required to the most significant bit
to perform the subtraction

- - @
19 .. 10 16 190 0 1

0 0 0 0 10 0

- 0 0 0 0 0 1 - 0 0 0 0 1 0
1| .11 1 Jo | 1 e 1. 11101

Binghamton CS-220

University Spring 2016

Carry Flag Confusion

* Unofficial Answer: The carry flag is set if either the most
significant bit overflows OR if A+(-B) results in negative
(assuming extra sign bit)

1 .1 ... 1 1 1 SGN
co o .. O O 0 1 o© o o .. 0 o0 o o0 1

+ 1 1 . 1 1 1 1 1 + 1 1 . 1 1 1 1 o0
EOOEODIDNIE miErEEEEEEs

Binghamton CS-220

University Spring 2016

Condition Codes (Explicit Set: Test)

Condition code can be set explicitly by the “test” instruction...
*test Src2, Srcl
*testl a,blike computing a&b without setting destination

ZFsetifa & b == 0 (a bitwise different from b)
°SF set if (a&b) most significant bit=1 (sign bit)
*OF unset (0)
*CF unset (0)

Binghamton CS-220

University Spring 2016

Translating C to x86: If/fthen/else
it (cond) { then-block }

else { else-block} cmpl
Jxx .L6
. ; then block
then-block jmp .L7

.L6:
else-block ; else block

Binghamton

CS-220

University

It/ Then/Else pushl %ebp

movl %esp, %ebp
subl $16, %esp

Spring 2016

Memory

int myfunc(int a,int b) { T EGATE)], e

x0000 0004

x0000 0003

cmpl 12(%ebp), Y%eax

int C; | P
if (@>b) c = a; JI€ :

else ¢ = b: movl 8(%ebp), Yeax
return c; | movl %eax, -4(%ebp)

(%ebp)

xdead beef

mp .L3
L2:

movl 12(%ebp), Y%eax
movl %eax, -4(%ebp)

L3:
movl -4(%ebp), %eax
leave
ret

