
Binghamton

University

CS-220

Spring 2016

Example x86 Code
Computer Systems Sections 3.3 - 3.6

Binghamton

University

CS-220

Spring 2016

Simple C Function

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

Binghamton

University

CS-220

Spring 2016

gcc -m32 -O0 -S prog.c

prog.c

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

prog.s
myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Binghamton

University

CS-220

Spring 2016

Function Invocation Details (Lecture 10)

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]

a=3;

b=4;

[Main (caller) invokes myfn(callee)]

x=a, y=b+2;

[myfn (callee) startup]

x*x + y*y

[myfn (callee) return to main]

[main (caller) return from myfn]

c = [return value from myfn]

[main (callee) return to OS]

• Evaluate arguments
• Copy argument values to parameters
• Preserve Caller’s state
• Save return address

• Preserve caller’s state
• Create/initialize local variables
• Establish argument accessibility

Binghamton

University

CS-220

Spring 2016

myfunc entrance

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC xdead beef

xFFFF FFD8

…

• Preserve caller’s state
• Create/initialize local variables
• Establish argument accessibility

Reg Value

ebp xFFFF FFE0

eax x0000 0000

Binghamton

University

CS-220

Spring 2016

myfunc statement 1

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC xdead beef

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 0003

Binghamton

University

CS-220

Spring 2016

myfunc statement 1

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC xdead beef

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 0006

Binghamton

University

CS-220

Spring 2016

myfunc statement 1

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 0006

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 0006

Binghamton

University

CS-220

Spring 2016

myfunc statement 2

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 0006

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 0004

v

Binghamton

University

CS-220

Spring 2016

myfunc statement 2

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 000A

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 0004

v

Binghamton

University

CS-220

Spring 2016

Function Return Details

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]

a=3;

b=4;

[Main (caller) invokes myfn(callee)]

x=a, y=b+2;

[myfn (callee) startup]

x*x + y*y

[myfn (callee) return to main]

[main (caller) return from myfn]

c = [return value from myfn]

[main (callee) return to OS]

• Evaluate return expression
• Save return value
• Free local variables
• Restore caller’s state
• Branch to return address

• Restore caller’s state
• Free space for arguments/return address
• Use returned value

Binghamton

University

CS-220

Spring 2016

myfunc return

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xFFFF FFF0

b xFFFF FFEC x0000 0004

a xFFFF FFE8 x0000 0003

xFFFF FFE4

xFFFF FFE0

c xFFFF FFDC x0000 000A

xFFFF FFD8

…

Reg Value

ebp xFFFF FFE0

eax x0000 000A

v

• Evaluate return expression
• Save return value
• Free local variables
• Restore caller’s state
• Branch to return address

Binghamton

University

CS-220

Spring 2016

If/Then/Else

int myfunc(int a,int b) {

int c;

if (a>b) c = a;

else c = b;

return c;

}

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

cmpl 12(%ebp), %eax

jle .L2

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L3

.L2:

movl 12(%ebp), %eax

movl %eax, -4(%ebp)

.L3:

movl -4(%ebp), %eax

leave

ret

Binghamton

University

CS-220

Spring 2016

If/Then/Else

int myfunc(int a,int b) {

int c;

if (a>b)

c = a;

else

c = b;

return c;

}

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

cmpl 12(%ebp), %eax

jle .L2

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L3

.L2:

movl 12(%ebp), %eax

movl %eax, -4(%ebp)

.L3:

movl -4(%ebp), %eax

leave

ret

Memory

b x0000 0004

a x0000 0003

(%ebp)

c xdead beef
v

v

Binghamton

University

CS-220

Spring 2016

Processor State (IA32)
Information about currently

executing program

• Temporary data
(%eax, …)

• Location of runtime stack
(%ebp,%esp)

• Location of current code control
point

(%eip, …)

• Status of recent tests
(CF, ZF, SF, OF)

• …

%eip

General purpose
registers

Current stack top

Current stack frame

Instruction pointer

CF ZF SF OF Condition codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Binghamton

University

CS-220

Spring 2016

Condition Code Registers

• Carry Flag =1 if last result MSB overflow (unsigned)

• Zero Flag = 1 if last result was zero

• Sign Flag = 1 if last result < 0 (MSB==1)

• Overflow Flag = 1 if last result sign is incorrect (++- or --+)

CF

ZF

SF

OF

ALU

Binghamton

University

CS-220

Spring 2016

Condition Codes (Implicit Setting)

• Implicitly set by arithmetic operations
Example: addl a,b ; b’=a+b

CF set if carry out from most significant bit (unsigned overflow)

ZF set if b’ == 0

SF set if b’ < 0 (as signed)

OF set if two’s-complement (signed) overflow
(a>0 && b>0 && b’<0) || (a<0 && b<0 && b’>=0)

• Not set by lea instruction

• Full documentation (IA32) or Wikibooks X86 Control Flow

http://www.jegerlehner.ch/intel/IntelCodeTable.pdf
https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow

Binghamton

University

CS-220

Spring 2016

Condition Codes (Explicit Set: Compare)

Condition code can be set explicitly by the “cmp” instruction…
•cmpl/cmpq Src2, Src1

•cmpl b,a like computing a-b without setting destination

•ZF set if a == b

•SF set if (a-b) < 0 (as signed)

•OF set if two’s-complement (signed) overflow
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

•CF set if carry out from most significant bit (used for unsigned comparisons)

Binghamton

University

CS-220

Spring 2016

Condition Code Interpretations

Signed Comparisons

Branch Means ZF SF OF CF

je a== b 1 X X X

jne a!=b 0 X X X

jg a>b
0 0 0 X

0 1 1 X

jge a>=b
X 0 0 X

X 1 1 X

jl a<b
0 1 0 X

0 0 1 X

jle a<=b
X 1 0 X

X 0 1 X

Unsigned Comparisons

Branch Means ZF SF OF CF

je a==b 1 X X X

jne a!=b 0 X X X

ja a>b 0 X X 0

jae a>=b X X X 0

jb b>a X X X 1

jbe b>=a
X X X 1

1 X X X

Based on CMP B,A  A-B or SUB B,A  A=A-B

Binghamton

University

CS-220

Spring 2016

Carry Flag Confusion

• Question: How does the carry flag get set when performing
unsigned subtraction?

• Official Answer: The carry flag is set if either the most significant
bit overflows OR if a borrow is required to the most significant bit
to perform the subtraction

1

0 … 0 0 0 1 0 0

- 0 … 0 0 0 0 1

1 … 1 1 1 0 1

1 1 … 1 1 1 1

1 ∅ … 1 ∅ 1 ∅ 1 ∅ 0 1

- 0 … 0 0 0 1 0

1 … 1 1 1 0 1

Binghamton

University

CS-220

Spring 2016

Carry Flag Confusion

• Unofficial Answer: The carry flag is set if either the most
significant bit overflows OR if A+(-B) results in negative
(assuming extra sign bit)

SGN

0 0 … 0 0 0 0 1

+ 1 1 … 1 1 1 1 0

1 1 … 1 1 1 0 1

1 1 1 … 1 1 1

0 0 … 0 0 0 1 0

+ 1 1 … 1 1 1 1 1

0 0 … 0 0 0 0 1

Binghamton

University

CS-220

Spring 2016

Condition Codes (Explicit Set: Test)

Condition code can be set explicitly by the “test” instruction…
•test Src2, Src1

•testl a,b like computing a&b without setting destination

•ZF set if a & b == 0 (a bitwise different from b)

•SF set if (a&b) most significant bit=1 (sign bit)

•OF unset (0)

•CF unset (0)

Binghamton

University

CS-220

Spring 2016

Translating C to x86: If/then/else

if (cond) { then-block }
else { else-block }

j!cond

then-block

set CC

…

cmpl …

jxx .L6

… ; then block

jmp .L7

.L6:

… ; else block

.L7:end

else-block

truefalse

Binghamton

University

CS-220

Spring 2016

If/Then/Else

int myfunc(int a,int b) {

int c;

if (a>b) c = a;

else c = b;

return c;

}

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

cmpl 12(%ebp), %eax

jle .L2

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L3

.L2:

movl 12(%ebp), %eax

movl %eax, -4(%ebp)

.L3:

movl -4(%ebp), %eax

leave

ret

Memory

b x0000 0004

a x0000 0003

(%ebp)

c xdead beef
v

v

